Abstract
Background: This study addresses the suicide risk predicting challenge by exploring the predictive ability of machine learning (ML) models integrated with theory-driven psychological risk factors in real-time crisis hotline chats. More importantly, we aimed to understand the specific theory-driven factors contributing to the ML prediction of suicide risk. Method: The dataset consisted of 17,654 crisis hotline chat sessions classified dichotomously as suicidal or not. We created a suicide risk factors-based lexicon (SRF), which encompasses language representations of key risk factors derived from the main suicide theories. The ML model (Suicide Risk-Bert; SR-BERT) was trained using natural language processing techniques incorporating the SRF lexicon. Results: The results showed that SR-BERT outperformed the other models. Logistic regression analysis identified several theory-driven risk factors significantly associated with suicide risk, the prominent ones were hopelessness, history of suicide, self-harm, and thwarted belongingness. Limitations: The lexicon is limited in its ability to fully encompass all theoretical concepts related to suicide risk, nor to all the language expressions of each concept. The classification of chats was determined by trained but non-professionals in metal health. Conclusion: This study highlights the potential of how ML models combined with theory-driven knowledge can improve suicide risk prediction. Our study underscores the importance of hopelessness and thwarted belongingness in suicide risk and thus their role in suicide prevention and intervention.
Original language | English |
---|---|
Pages (from-to) | 416-424 |
Number of pages | 9 |
Journal | Suicide and Life-Threatening Behavior |
Volume | 54 |
Issue number | 3 |
Early online date | 12 Feb 2024 |
DOIs | |
State | Published - Jun 2024 |
Bibliographical note
Publisher Copyright:© 2024 The Authors. Suicide and Life-Threatening Behavior published by Wiley Periodicals LLC on behalf of American Association of Suicidology.
Keywords
- crisis chat hotlines
- hopelessness
- machine learning
- natural language processing
- suicide
ASJC Scopus subject areas
- Clinical Psychology
- Public Health, Environmental and Occupational Health
- Psychiatry and Mental health