Abstract
The computerized dynamic posturography (CDP) test examines the response pattern to simultaneous, multimodal sensory stimulation. The purpose of this prospective, controlled study was to investigate whether postural dynamics evaluated by CDP are related to seasickness severity and the process of habituation to sea conditions. Subjects included 74 naval personnel assigned to service aboard ship and 29 controls designated for shore-based positions. Study participants performed a baseline CDP test, and subsequent follow-up examinations 6 and 12 months after completion of their training. On those occasions they also completed a seasickness severity questionnaire. Longitudinal changes in postural parameters were examined, as well as a possible correlation between baseline CDP results and final seasickness severity scores. The results indicated longitudinal habituation to seasickness. Reduced scores were found for sensory organization sub-tests 3 and 5 in the first follow-up examination, reflecting increased weighting of visual and somatosensory input in the maintenance of balance. Scores in the second follow-up examination were above baseline values, indicating increased reliance on vestibular cues. These significant bimodal changes were found only in study subjects having the highest degree of habituation to seasickness. A significant decrease in motor response strength was found in parallel with increased habituation to seasickness. Baseline CDP results and postural control dynamics were not correlated with subjects' final seasickness severity score. These results suggest a potential role for CDP in monitoring the process of habituation to unusual motion conditions.
Original language | English |
---|---|
Pages (from-to) | 134-137 |
Number of pages | 4 |
Journal | Neuroscience Letters |
Volume | 479 |
Issue number | 2 |
DOIs | |
State | Published - Jul 2010 |
Externally published | Yes |
Keywords
- Computerized dynamic posturography (CDP)
- Habituation
- Motion sickness
- Vestibular organs
ASJC Scopus subject areas
- General Neuroscience