Abstract
We consider a push pull queueing system with two servers and two types of jobs which are processed by the two servers in opposite order, with stochastic generally distributed pro- cessing times. This push pull system was introduced by Kop- zon and Weiss, who assumed exponential processing times. It is similar to the Kumar-Seidman Rybko-Stolyar (KSRS) multi-class queueing network, with the distinction that in- stead of random arrivals, there is an infinite supply of jobs of both types. Thus each server can either process jobs of one of the types, which it pulls from the other server, or jobs of the other type which it pushes out of the infinite supply towards the other server. Unlike the KSRS network, we can find policies under which our push pull network works at full utilization, with both servers busy at all times, and without being congested. We perform an asymptotic analysis of the push pull network under these policies to quantify its be- havior: We show that under fluid scaling the fluid model of the network is stable. We adapt the proofs of Dai, to show that as a result the queues of jobs waiting for pull operation are positive Harris recurrent. Finally we obtain the diffu- sion scale behavior of the network, in which we show that the queues are zero under diffusion scaling, and calculate the Brownian approximation of the output processes of the two types of jobs. The approximation shows that the two output streams are highly negatively correlated.
Original language | English |
---|---|
DOIs | |
State | Published - 2008 |
Event | 3rd International Conference on Performance Evaluation Methodologies and Tools, VALUETOOLS 2008 - Athens, Greece Duration: 20 Oct 2008 → 24 Oct 2008 |
Conference
Conference | 3rd International Conference on Performance Evaluation Methodologies and Tools, VALUETOOLS 2008 |
---|---|
Country/Territory | Greece |
City | Athens |
Period | 20/10/08 → 24/10/08 |
Bibliographical note
Funding Information:We would like to thank Serguei Foss for useful discussions on stability of Markov chains, and fluid and diffusion approximations of queueing networks. The author’s research was supported in part by Israel Science Foundation Grant 249/02 and 454/05 and by European Network of Excellence Euro-NGI.
Keywords
- Diffusion approximations
- Fluid models
- Infinite virtual queues
- Positive harris recurrence
- Push pull
- Queueing networks
ASJC Scopus subject areas
- Instrumentation