Abstract
For a tournament T, let ν3(T) denote the maximum number of pairwise edge-disjoint triangles (directed cycles of length 3) in T. Let ν3(n) denote the minimum of ν3(T) ranging over all regular tournaments with n vertices (n odd). We conjecture that ν3(n)=(1+o(1))n2/9 and prove thatn211.43(1-o(1))≤ν3(n)≤n29(1+o(1)) improving upon the best known upper bound of n2-18 and lower bound of n211.5(1-o(1)). The result is generalized to tournaments where the indegree and outdegree at each vertex may differ by at most βn.
Original language | English |
---|---|
Pages (from-to) | 217-228 |
Number of pages | 12 |
Journal | Discrete Mathematics |
Volume | 338 |
Issue number | 2 |
DOIs | |
State | Published - 6 Feb 2015 |
Bibliographical note
Publisher Copyright:© 2014 Elsevier B.V. All rights reserved.
Keywords
- Fractional
- Packing
- Tournament
ASJC Scopus subject areas
- Theoretical Computer Science
- Discrete Mathematics and Combinatorics