Abstract
Underwater image restoration is a challenging task because of water effects that increase dramatically with distance. This is worsened by lack of ground truth data of clean scenes without water. Diffusion priors have emerged as strong image restoration priors. However, they are often trained with a dataset of the desired restored output, which is not available in our case. We also observe that using only color data is insufficient, and therefore augment the prior with a depth channel. We train an unconditional diffusion model prior on the joint space of color and depth, using standard RGBD datasets of natural outdoor scenes in air. Using this prior together with a novel guidance method based on the underwater image formation model, we generate posterior samples of clean images, removing the water effects. Even though our prior did not see any underwater images during training, our method outperforms state-of-the-art baselines for image restoration on very challenging scenes. Our code, models and data are available on the project’s website.
Original language | English |
---|---|
Title of host publication | Computer Vision – ECCV 2024 - 18th European Conference, Proceedings |
Editors | Aleš Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, Gül Varol |
Publisher | Springer Science and Business Media Deutschland GmbH |
Pages | 302-319 |
Number of pages | 18 |
ISBN (Print) | 9783031730320 |
DOIs | |
State | Published - 2025 |
Event | 18th European Conference on Computer Vision, ECCV 2024 - Milan, Italy Duration: 29 Sep 2024 → 4 Oct 2024 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 15120 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 18th European Conference on Computer Vision, ECCV 2024 |
---|---|
Country/Territory | Italy |
City | Milan |
Period | 29/09/24 → 4/10/24 |
Bibliographical note
Publisher Copyright:© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
Keywords
- Diffusion Models
- Physics-Based Computer Vision
- Underwater Image Restoration
ASJC Scopus subject areas
- Theoretical Computer Science
- General Computer Science