Orthogonal Decomposition and Packing of Complete Graphs

Yair Caro, Raphael Yuster

Research output: Contribution to journalArticlepeer-review

Abstract

An H-decomposition of a graph G is a partition of the edge-set of G into subsets, where each subset induces a copy of the graph H. A k-orthogonal H-decomposition of a graph G is a set of k H-decompositions of G, such that any two copies of H in distinct H-decompositions intersect in at most one edge. In case G = Kn and H = Kr, a k-orthogonal Kr-decomposition of Kn is called an (n, r, k) completely reducible super-simple design. We prove that for any two fixed integers r and k, there exists N = N(k, r) such that for every n > N, if Kn has a Kr-decomposition, then Kn also has an (n, r, k) completely-reducible super-simple design. If Kn does not have a Kr-decomposition, we show how to obtain a k-orthogonal optimal Kr-packing of Kn . Complexity issues of k-orthogonal H-decompositions are also treated.

Original languageEnglish
Pages (from-to)93-111
Number of pages19
JournalJournal of Combinatorial Theory. Series A
Volume88
Issue number1
DOIs
StatePublished - Oct 1999

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Discrete Mathematics and Combinatorics
  • Computational Theory and Mathematics

Fingerprint

Dive into the research topics of 'Orthogonal Decomposition and Packing of Complete Graphs'. Together they form a unique fingerprint.

Cite this