Open-source computational simulation of moth-inspired navigation algorithm: A benchmark framework

Yiftach Golov, Noam Benelli, Roi Gurka, Ally Harari, Gregory Zilman, Alex Liberzon

Research output: Contribution to journalArticlepeer-review


Olfactory navigation is defined as a task of a self-propelled navigator with some sensors capabilities to detect odor (or scalar concentration) convected and diffused in a windy environment. Known for their expertise in locating an odor source, male moths feature a bio-inspirational model of olfactory navigation using chemosensory. Many studies have developed moths-inspired algorithms based on proposed strategies of odor-sourcing. However, comparing among various bio-inspired strategies is challenging, due to the lack of a componential framework that allows statistical comparison of their performances, in a controlled environment. This work aims at closing this gap, using an open source, freely accessible simulation framework. To demonstrate the applicability of our simulated framework as a benchmarking tool, we implemented two different moth-inspired navigation strategies; for each strategy, specific modifications in the navigation module were carried out, resulting in four different navigation models. We tested the performance of moth-like navigators of these models through various wind and odor spread parameters in a virtual turbulent environment. The performance of the navigators was comprehensively analyzed using bio-statistical tests. This benchmark-ready simulation framework could be useful for the biology-oriented, as well as engineering-oriented studies, assisting in deducing the evolutionary efficient strategies and improving self-propelled autonomous systems in complex environments. • The open-source framework `Mothpy' provides a computational platform that simulates the behavior of moth-like navigators, using two main inputs to be modified by the user: (1) flow condition; and (2) navigation strategy. • `Mothpy' can be used as a benchmarking platform to compare the performance of multiple moth-like navigators, under various physical environments, and different searching strategies. • Method name: Mothpy 0.0.1' - an open-source moth-inspired navigator simulator.

Original languageEnglish
Article number101529
StatePublished - Jan 2021
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2021


  • Bio-inspiration
  • Moths
  • Navigation strategies
  • Odor localization
  • Simulation framework
  • `Mothpy 0.0.1' - an open-source moth-inspired navigator simulator

ASJC Scopus subject areas

  • Medical Laboratory Technology
  • Clinical Biochemistry


Dive into the research topics of 'Open-source computational simulation of moth-inspired navigation algorithm: A benchmark framework'. Together they form a unique fingerprint.

Cite this