Abstract
Submodular function maximization has been studied extensively in recent years under various constraints and models. The problem plays a major role in various disciplines. We study a natural online variant of this problem in which elements arrive one by one and the algorithm has to maintain a solution obeying certain constraints at all times. Upon arrival of an element, the algorithm has to decide whether to accept the element into its solution and may preempt previously chosen elements. The goal is tomaximize a submodular function over the set of elements in the solution. We study two special cases of this general problem and derive upper and lower bounds on the competitive ratio. Specifically, we design a 1/e-competitive algorithm for the unconstrained case in which the algorithm may hold any subset of the elements, and constant competitive ratio algorithms for the case where the algorithm may hold at most k elements in its solution.
Original language | English |
---|---|
Article number | 0076 |
Journal | ACM Transactions on Algorithms |
Volume | 15 |
Issue number | 3 |
DOIs | |
State | Published - May 2019 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2019 Association for Computing Machinery.
Keywords
- Competitive analysis
- Online algorithms
- Preemption
- Submodular maximization
ASJC Scopus subject areas
- Mathematics (miscellaneous)