Abstract
The harmonic index of a graph G is denoted by H(G) and is defined as H(G)=∑uv∈E(G)2du+dv, where du, dv denote the degrees of the vertices u, v, respectively, of G and E(G) is the edge set of G. In this paper, the graphs having sixth to fifteenth maximum harmonic indices are characterized from the class of all n-vertex trees for sufficiently large n.
Original language | English |
---|---|
Pages (from-to) | 771-780 |
Number of pages | 10 |
Journal | Afrika Matematika |
Volume | 31 |
Issue number | 5-6 |
DOIs | |
State | Published - 1 Sep 2020 |
Bibliographical note
Publisher Copyright:© 2019, African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature.
Keywords
- Extremal problem
- Harmonic index
- Trees
ASJC Scopus subject areas
- General Mathematics