Abstract
For an orientation H with n vertices, let T(H) denote the maximum possible number of labelled copies of H in an n-vertex tournament. It is easily seen that T(H) ≥ n!/2e(H), as the latter is the expected number of such copies in a random tournament. For n odd, let R(H) denote the maximum possible number of labelled copies of H in an n-vertex regular tournament. In fact, Adler, Alon and Ross proved that for H=C n, the directed Hamilton cycle, T(C n) ≥ (e-o(1))n!/2n, and it was observed by Alon that already R(C n) ≥ (e-o(1))n!/2n. Similar results hold for the directed Hamilton path P n. In other words, for the Hamilton path and cycle, the lower bound derived from the expectation argument can be improved by a constant factor. In this paper we significantly extend these results, and prove that they hold for a larger family of orientations H which includes all bounded-degree Eulerian orientations and all bounded-degree balanced orientations, as well as many others. One corollary of our method is that for any fixed k, every k-regular orientation H with n vertices satisfies T(H) ≥ (e k-o(1))n!/2e(H), and in fact, for n odd, R(H) ≥ (e k-o(1))n!/2e(H).
Original language | English |
---|---|
Pages (from-to) | 775-796 |
Number of pages | 22 |
Journal | Combinatorics Probability and Computing |
Volume | 26 |
Issue number | 5 |
DOIs | |
State | Published - 1 Sep 2017 |
Bibliographical note
Publisher Copyright:© 2017 Cambridge University Press.
ASJC Scopus subject areas
- Theoretical Computer Science
- Statistics and Probability
- Computational Theory and Mathematics
- Applied Mathematics