Abstract
We continue the study of list recovery properties of high-rate tensor codes, initiated by Hemenway, Ron-Zewi, and Wootters (FOCS'17). In that work it was shown that the tensor product of an efficient (poly-time) high-rate globally list recoverable code is approximately locally list recoverable, as well as globally list recoverable in probabilistic near-linear time. This was used in turn to give the first capacity-achieving list decodable codes with (1) local list decoding algorithms, and with (2) probabilistic near-linear time global list decoding algorithms. This also yielded constant-rate codes approaching the Gilbert-Varshamov bound with probabilistic near-linear time global unique decoding algorithms. In the current work we obtain the following results: 1) The tensor product of an efficient (poly-time) high-rate globally list recoverable code is globally list recoverable in deterministic near-linear time. This yields in turn the first capacity-achieving list decodable codes with deterministic near-linear time global list decoding algorithms. It also gives constant-rate codes approaching the Gilbert-Varshamov bound with deterministic near-linear time global unique decoding algorithms. 2) If the base code is additionally locally correctable, then the tensor product is (genuinely) locally list recoverable. This yields in turn (non-explicit) constant-rate codes approaching the Gilbert-Varshamov bound that are locally correctable with query complexity and running time $N^{o(1)}$. This improves over prior work by Gopi et. al. (SODA'17; IEEE Transactions on Information Theory'18) that only gave query complexity $N^{ \varepsilon }$ with rate that is exponentially small in $1/ \varepsilon $. 3) A nearly-tight combinatorial lower bound on output list size for list recovering high-rate tensor codes. This bound implies in turn a nearly-tight lower bound of $N^{\Omega (1/\log \log N)}$ on the product of query complexity and output list size for locally list recovering high-rate tensor codes.
Original language | English |
---|---|
Article number | 9195853 |
Pages (from-to) | 296-316 |
Number of pages | 21 |
Journal | IEEE Transactions on Information Theory |
Volume | 67 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2021 |
Bibliographical note
Publisher Copyright:© 1963-2012 IEEE.
Keywords
- Coding theory
- list-decoding and recovery
- local codes
- tensor codes
ASJC Scopus subject areas
- Information Systems
- Computer Science Applications
- Library and Information Sciences