Obstacle Aware Sampling for Path Planning

Murad Tukan, Alaa Maalouf, Dan Feldman, Roi Poranne

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Many path planning algorithms are based on sampling the state space. While this approach is very simple, it can become costly when the obstacles are unknown, since samples hitting these obstacles are wasted. The goal of this paper is to efficiently identify obstacles in a map and remove them from the sampling space. To this end, we propose a pre-processing algorithm for space exploration that enables more efficient sampling. We show that it can boost the performance of other space sampling methods and path planners. Our approach is based on the fact that a convex obstacle can be approximated provably well by its minimum volume enclosing ellipsoid (MVEE), and a non-convex obstacle may be partitioned into convex shapes. Our main contribution is an al-gorithm that strategically finds a small sample, called the active-coreset, that adaptively samples the space via membership-oracle such that the MVEE of the coreset approximates the MVEE of the obstacle. Experimental results confirm the ef-fectiveness of our approach across multiple planners based on rapidly-exploring random trees, showing significant improve-ment in terms of time and path length.

Original languageEnglish
Title of host publicationIEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages13676-13683
Number of pages8
ISBN (Electronic)9781665479271
DOIs
StatePublished - 2022
Event2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022 - Kyoto, Japan
Duration: 23 Oct 202227 Oct 2022

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
Volume2022-October
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022
Country/TerritoryJapan
CityKyoto
Period23/10/2227/10/22

Bibliographical note

Funding Information:
ACKNOWLEDGMENT This research was supported by Grant No. 2020154 from the United States-Israel Binational Science Foundation (BSF)

Publisher Copyright:
© 2022 IEEE.

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Obstacle Aware Sampling for Path Planning'. Together they form a unique fingerprint.

Cite this