Non-asymptotic bounds for autoregressive approximation

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The subject of this paper is the autoregressive (AR) approximation of a stationary, Gaussian discrete time process, based on a finite sequence of observations. We adopt the nonparametric minimax framework and study how well can the process be approximated by a finite order autoregressive model.

Original languageEnglish
Title of host publicationProceedings - 1998 IEEE International Symposium on Information Theory, ISIT 1998
Pages304
Number of pages1
DOIs
StatePublished - 1998
Event1998 IEEE International Symposium on Information Theory, ISIT 1998 - Cambridge, MA, United States
Duration: 16 Aug 199821 Aug 1998

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
ISSN (Print)2157-8095

Conference

Conference1998 IEEE International Symposium on Information Theory, ISIT 1998
Country/TerritoryUnited States
CityCambridge, MA
Period16/08/9821/08/98

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Non-asymptotic bounds for autoregressive approximation'. Together they form a unique fingerprint.

Cite this