Noise-precision tradeoff in predicting combinations of mutations and drugs

Avichai Tendler, Anat Zimmer, Avi Mayo, Uri Alon

Research output: Contribution to journalArticlepeer-review

Abstract

Many biological problems involve the response to multiple perturbations. Examples include response to combinations of many drugs, and the effects of combinations of many mutations. Such problems have an exponentially large space of combinations, which makes it infeasible to cover the entire space experimentally. To overcome this problem, several formulae that predict the effect of drug combinations or fitness landscape values have been proposed. These formulae use the effects of single perturbations and pairs of perturbations to predict triplets and higher order combinations. Interestingly, different formulae perform best on different datasets. Here we use Pareto optimality theory to quantitatively explain why no formula is optimal for all datasets, due to an inherent bias-variance (noise-precision) tradeoff. We calculate the Pareto front of log-linear formulae and find that the optimal formula depends on properties of the dataset: the typical interaction strength and the experimental noise. This study provides an approach to choose a suitable prediction formula for a given dataset, in order to best overcome the combinatorial explosion problem.

Original languageEnglish
Article numbere1006956
JournalPLoS Computational Biology
Volume15
Issue number5
DOIs
StatePublished - 2019
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2019 Tendler et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Modeling and Simulation
  • Ecology
  • Molecular Biology
  • Genetics
  • Cellular and Molecular Neuroscience
  • Computational Theory and Mathematics

Fingerprint

Dive into the research topics of 'Noise-precision tradeoff in predicting combinations of mutations and drugs'. Together they form a unique fingerprint.

Cite this