Newton-PnP: Real-time Visual Navigation for Autonomous Toy-Drones

Ibrahim Jubran, Fares Fares, Yuval Alfassi, Firas Ayoub, Dan Feldman

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The Perspective-n-Point problem aims to estimate the relative pose between a calibrated monocular camera and a known 3D model, by aligning pairs of 2D captured image points to their corresponding 3D points in the model. We suggest an algorithm that runs on weak IoT devices in real-time but still provides provable theoretical guarantees for both running time and correctness. Existing solvers provide only one of these requirements. Our main motivation was to turn the popular DJI's Tello Drone (<90gr, <100) into an autonomous drone that navigates in an indoor environment with no external human/laptop/sensor, by simply attaching a Raspberry PI Zero (<9gr, <25) to it. This tiny micro-processor takes as input a real-time video from a tiny RGB camera, and runs our PnP solver on-board. Extensive experimental results, open source code, and a demonstration video are included.

Original languageEnglish
Title of host publicationIEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages13363-13370
Number of pages8
ISBN (Electronic)9781665479271
DOIs
StatePublished - 2022
Event2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022 - Kyoto, Japan
Duration: 23 Oct 202227 Oct 2022

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
Volume2022-October
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022
Country/TerritoryJapan
CityKyoto
Period23/10/2227/10/22

Bibliographical note

Publisher Copyright:
© 2022 IEEE.

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Newton-PnP: Real-time Visual Navigation for Autonomous Toy-Drones'. Together they form a unique fingerprint.

Cite this