Abstract
Burst denoising is now more relevant than ever, as computational photography helps overcome sensitivity issues inherent in mobile phones and small cameras. A major challenge in burst-denoising is in coping with pixel misalignment, which was so far handled with rather simplistic assumptions of simple motion, or the ability to align in pre-processing. Such assumptions are not realistic in the presence of large motion and high levels of noise. We show that Neural Radiance Fields (NeRFs), originally suggested for physics-based novel-view rendering, can serve as a powerful framework for burst denoising. NeRFs have an inherent capability of handling noise as they integrate information from multiple images, but they are limited in doing so, mainly since they build on pixel-wise operations which are suitable to ideal imaging conditions. Our approach, termed NAN111Refer to the project website: noise-aware-nerf.github.io, leverages inter-view and spatial information in NeRFs to better deal with noise. It achieves state-of-the-art results in burst denoising and is especially successful in coping with large movement and occlusions, under very high levels of noise. With the rapid advances in accelerating NeRFs, it could provide a powerful platform for denoising in challenging environments.
Original language | English |
---|---|
Title of host publication | Proceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 |
Publisher | IEEE Computer Society |
Pages | 12662-12671 |
Number of pages | 10 |
ISBN (Electronic) | 9781665469463 |
DOIs | |
State | Published - 2022 |
Event | 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 - New Orleans, United States Duration: 19 Jun 2022 → 24 Jun 2022 |
Publication series
Name | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
---|---|
Volume | 2022-June |
ISSN (Print) | 1063-6919 |
Conference
Conference | 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 |
---|---|
Country/Territory | United States |
City | New Orleans |
Period | 19/06/22 → 24/06/22 |
Bibliographical note
Publisher Copyright:© 2022 IEEE.
Keywords
- Low-level vision
- Physics-based vision and shape-from-X
ASJC Scopus subject areas
- Software
- Computer Vision and Pattern Recognition