Abstract
In this work we present a multi-source uncertain entity resolution model and show its implementation in a use case of Yad Vashem, the central repository of Holocaust-era information. The Yad Vashem dataset is unique with respect to classic entity resolution, by virtue of being both massively multi-source and by requiring multi-level entity resolution. With today's abundance of information sources, this project motivates the use of multi-source resolution on a big-data scale. We instantiate the proposed model using the MFIBlocks entity resolution algorithm and a machine learning approach, based upon decision trees to transform soft clusters into ranked clustering of records, representing possible entities. An extensive empirical evaluation demonstrates the unique properties of this dataset that make it a good candidate for multi-source entity resolution. We conclude with proposing avenues for future research in this realm.
Original language | English |
---|---|
Pages (from-to) | 124-136 |
Number of pages | 13 |
Journal | Information Systems |
Volume | 65 |
DOIs | |
State | Published - 1 Apr 2017 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2016 Elsevier Ltd
Keywords
- Blocking
- Holocaust
- Uncertain entity resolution
ASJC Scopus subject areas
- Software
- Information Systems
- Hardware and Architecture