Abstract
This paper extends to surfaces the multi-scale approach of edge detection on images. The common practice for detecting curves on surfaces requires the user to first select the scale of the features, apply an appropriate smoothing, and detect the edges on the smoothed surface. This approach suffers from two drawbacks. First, it relies on a hidden assumption that all the features on the surface are of the same scale. Second, manual user intervention is required. In this paper, we propose a general framework for automatically detecting the optimal scale for each point on the surface. We smooth the surface at each point according to this optimal scale and run the curve detection algorithm on the resulting surface. Our multi-scale algorithm solves the two disadvantages of the single-scale approach mentioned above. We demonstrate how to realize our approach on two commonly-used special cases: ridges & valleys and relief edges. In each case, the optimal scale is found in accordance with the mathematical definition of the curve.
Original language | English |
---|---|
Article number | 6618880 |
Pages (from-to) | 225-232 |
Number of pages | 8 |
Journal | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
DOIs | |
State | Published - 2013 |
Event | 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2013 - Portland, OR, United States Duration: 23 Jun 2013 → 28 Jun 2013 |
Keywords
- 3D
- Curves
- Multiscale
ASJC Scopus subject areas
- Software
- Computer Vision and Pattern Recognition