Multi-Omics Analysis Reveals the Mechanism Underlying the Edaphic Adaptation in Wild Barley at Evolution Slope (Tabigha)

Shengguan Cai, Qiufang Shen, Yuqing Huang, Zhigang Han, Dezhi Wu, Zhong Hua Chen, Eviatar Nevo, Guoping Zhang

Research output: Contribution to journalArticlepeer-review


At the microsite “Evolution Slope”, Tabigha, Israel, wild barley (Hordeum spontaneum) populations adapted to dry Terra Rossa soil, and its derivative abutting wild barley population adapted to moist and fungi-rich Basalt soil. However, the mechanisms underlying the edaphic adaptation remain elusive. Accordingly, whole genome bisulfite sequencing, RNA-sequencing, and metabolome analysis are performed on ten wild barley accessions inhabiting Terra Rossa and Basalt soil. A total of 121 433 differentially methylated regions (DMRs) and 10 478 DMR-genes are identified between the two wild barley populations. DMR-genes in CG context (CG-DMR-genes) are enriched in the pathways related with the fundamental processes, and DMR-genes in CHH context (CHH-DMR-genes) are mainly associated with defense response. Transcriptome and metabolome analysis reveal that the primary and secondary metabolisms are more active in Terra Rossa and Basalt wild barley populations, respectively. Multi-omics analysis indicate that sugar metabolism facilitates the adaptation of wild barley to dry Terra Rossa soil, whereas the enhancement of phenylpropanoid/phenolamide biosynthesis is beneficial for wild barley to inhabit moist and fungi pathogen-rich Basalt soil. The current results make a deep insight into edaphic adaptation of wild barley and provide elite genetic and epigenetic resources for developing barley with high abiotic stress tolerance.

Original languageEnglish
Article number2101374
JournalAdvanced Science
Issue number20
StatePublished - 20 Oct 2021

Bibliographical note

Publisher Copyright:
© 2021 The Authors. Advanced Science published by Wiley-VCH GmbH


  • DNA methylation
  • Hordeum spontaneum
  • adaptive complexes
  • environmental stress
  • metabolome
  • plant evolution
  • transcriptome

ASJC Scopus subject areas

  • General Engineering
  • General Physics and Astronomy
  • General Chemical Engineering
  • General Materials Science
  • Biochemistry, Genetics and Molecular Biology (miscellaneous)
  • Medicine (miscellaneous)


Dive into the research topics of 'Multi-Omics Analysis Reveals the Mechanism Underlying the Edaphic Adaptation in Wild Barley at Evolution Slope (Tabigha)'. Together they form a unique fingerprint.

Cite this