Abstract
We give an O(n log log n) time algorithm for computing the minimum cut (or equivalently, the shortest cycle) of a weighted directed planar graph. This improves the previous fastest O(n log3 n) solution. Interestingly, while in undirected planar graphs both min cut and min st-cut have O(n log log n) solutions, in directed planar graphs our result makes min cut faster than min st-cut, which currently requires O(n log n).
Original language | English |
---|---|
Title of host publication | 29th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018 |
Editors | Artur Czumaj |
Publisher | Association for Computing Machinery |
Pages | 477-494 |
Number of pages | 18 |
ISBN (Electronic) | 9781611975031 |
DOIs | |
State | Published - 2018 |
Event | 29th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018 - New Orleans, United States Duration: 7 Jan 2018 → 10 Jan 2018 |
Publication series
Name | Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms |
---|
Conference
Conference | 29th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018 |
---|---|
Country/Territory | United States |
City | New Orleans |
Period | 7/01/18 → 10/01/18 |
Bibliographical note
Publisher Copyright:© Copyright 2018 by SIAM.
ASJC Scopus subject areas
- Software
- General Mathematics