Abstract
In a previous investigation we studied some asymptotic properties of the sample mean location on submanifolds of Euclidean space. The sample mean location generalizes least squares statistics to smooth compact submanifolds of Euclidean space. In this paper these properties are put into use. Tests for hypotheses about mean location are constructed and confidence regions for mean location are indicated. We study the asymptotic distribution of the test statistic. The problem of comparing mean locations for two samples is analyzed. Special attention is paid to observations on Stiefel manifolds including the orthogonal groupO(p) and spheresSk-1, and special orthogonal groupsSO(p). The results also are illustrated with our experience with simulations.
Original language | English |
---|---|
Pages (from-to) | 227-243 |
Number of pages | 17 |
Journal | Journal of Multivariate Analysis |
Volume | 67 |
Issue number | 2 |
DOIs | |
State | Published - Nov 1998 |
Keywords
- Mean location; degenerate normal distribution; sample Weingarten mapping; cut-locus; Stiefel manifold; test; confidence interval; asymptotic; acceptance-rejection method; simulation
ASJC Scopus subject areas
- Statistics and Probability
- Numerical Analysis
- Statistics, Probability and Uncertainty