TY - GEN
T1 - Max-min online allocations with a reordering buffer
AU - Epstein, Leah
AU - Levin, Asaf
AU - Van Stee, Rob
PY - 2010
Y1 - 2010
N2 - We consider online scheduling so as to maximize the minimum load, using a reordering buffer which can store some of the jobs before they are assigned irrevocably to machines. For m identical machines, we show an upper bound of H m-1+1 for a buffer of size m-1. A competitive ratio below H m is not possible with any finite buffer size, and it requires a buffer of size to get a ratio of O(logm). For uniformly related machines, we show that a buffer of size m+1 is sufficient to get an approximation ratio of m, which is best possible for any finite sized buffer. Finally, for the restricted assignment model, we show lower bounds identical to those of uniformly related machines, but using different constructions. In addition, we design an algorithm of approximation ratio O(m) which uses a finite sized buffer. We give tight bounds for two machines in all the three models. These results sharply contrast to the (previously known) results which can be achieved without the usage of a reordering buffer, where it is not possible to get a ratio below an approximation ratio of m already for identical machines, and it is impossible to obtain an algorithm of finite approximation ratio in the other two models, even for m=2. Our results strengthen the previous conclusion that a reordering buffer is a powerful tool and it allows a significant decrease in the competitive ratio of online algorithms for scheduling problems. Another interesting aspect of our results is that our algorithm for identical machines imitates the behavior of the greedy algorithm on (a specific set of) related machines, whereas our algorithm for related machines completely ignores the speeds until the end, and then only uses the relative order of the speeds.
AB - We consider online scheduling so as to maximize the minimum load, using a reordering buffer which can store some of the jobs before they are assigned irrevocably to machines. For m identical machines, we show an upper bound of H m-1+1 for a buffer of size m-1. A competitive ratio below H m is not possible with any finite buffer size, and it requires a buffer of size to get a ratio of O(logm). For uniformly related machines, we show that a buffer of size m+1 is sufficient to get an approximation ratio of m, which is best possible for any finite sized buffer. Finally, for the restricted assignment model, we show lower bounds identical to those of uniformly related machines, but using different constructions. In addition, we design an algorithm of approximation ratio O(m) which uses a finite sized buffer. We give tight bounds for two machines in all the three models. These results sharply contrast to the (previously known) results which can be achieved without the usage of a reordering buffer, where it is not possible to get a ratio below an approximation ratio of m already for identical machines, and it is impossible to obtain an algorithm of finite approximation ratio in the other two models, even for m=2. Our results strengthen the previous conclusion that a reordering buffer is a powerful tool and it allows a significant decrease in the competitive ratio of online algorithms for scheduling problems. Another interesting aspect of our results is that our algorithm for identical machines imitates the behavior of the greedy algorithm on (a specific set of) related machines, whereas our algorithm for related machines completely ignores the speeds until the end, and then only uses the relative order of the speeds.
UR - http://www.scopus.com/inward/record.url?scp=77955319716&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-14165-2_29
DO - 10.1007/978-3-642-14165-2_29
M3 - Conference contribution
AN - SCOPUS:77955319716
SN - 3642141641
SN - 9783642141645
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 336
EP - 347
BT - Automata, Languages and Programming - 37th International Colloquium, ICALP 2010, Proceedings
T2 - 37th International Colloquium on Automata, Languages and Programming, ICALP 2010
Y2 - 6 July 2010 through 10 July 2010
ER -