## Abstract

Interactive oracle proofs (IOPs) are a hybrid between interactive proofs and PCPs. In an IOP, the prover is allowed to interact with a verifier (like in an interactive proof) by sending relatively long messages to the verifier, who in turn is only allowed to query a few of the bits that were sent (like in a PCP). Efficient IOPs are currently at the core of leading practical implementations of highly efficient proof-systems.In this work we construct, for a large class of NP relations, IOPs in which the communication complexity approaches the witness length. More precisely, for any NP relation for which membership can be decided in polynomial-time with bounded polynomial space (i.e., space n^{ζ} for some sufficiently small constant ζ > 0; e.g., SAT, Hamiltonicity, Clique, Vertex-Cover) and for any constant γ> 0, we construct an IOP with communication complexity (1 + γ) ·n, where n is the original witness length. The number of rounds, as well as the number of queries made by the IOP verifier, are constant.This result improves over prior works on short IOPs/PCPs in two ways. First, the communication complexity in these short IOPs is proportional to the complexity of verifying the NP witness, which can be polynomially larger than the witness size. Second, even ignoring the difference between witness length and non-deterministic verification time, prior works incur (at the very least) a large constant multiplicative overhead to the communication complexity.In particular, as a special case, we also obtain an IOP for CircuitSAT with communication complexity (1 + γ) ·t, for circuits of size t and any constant γ> 0. This improves upon the prior state-of-the-art work of Ben Sasson et al. (ICALP, 2017) who construct an IOP for CircuitSAT with communication length c ·t for a large (unspecified) constant c ≥ 1.Our proof leverages the local testability and (relaxed) local correctability of high-rate tensor codes, as well as their support of a sumcheck-like procedure. In particular, we bypass the barrier imposed by the low rate of multiplication codes (e.g., Reed-Solomon, Reed-Muller, or AG codes) - a key building block of all known short PCP/IOP constructions.

Original language | English |
---|---|

Article number | 18 |

Journal | Journal of the ACM |

Volume | 71 |

Issue number | 3 |

DOIs | |

State | Published - 11 Jun 2024 |

### Bibliographical note

Publisher Copyright:© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

## Keywords

- Interactive oracle proofs
- interactive proofs
- multiplication codes
- probabilistically-checkable proofs
- tensor codes

## ASJC Scopus subject areas

- Software
- Control and Systems Engineering
- Information Systems
- Hardware and Architecture
- Artificial Intelligence