TY - GEN
T1 - Local MST computation with short advice
AU - Fraigniaud, Pierre
AU - Korman, Amos
AU - Lebhar, Emmanuelle
PY - 2007
Y1 - 2007
N2 - We use the recently introduced advising scheme framework for measuring the difficulty of locally distributively computing a Minimum Spanning Tree (MST). An (m,t)-advising scheme for a distributed problem P is a way, for every possible input I of P, to provide an "advice" (i.e., a bit string) about I to each node so that: (1) the maximum size of the advices is at most m bits, and (2) the problem P can be solved distributively in at most t rounds using the advices as inputs. In case of MST, the output returned by each node of a weighted graph G is the edge leading to its parent in some rooted MST T of G. Clearly, there is a trivial (log n,0)-advising scheme for MST (each node is given the local port number of the edge leading to the root of some MST T), and it is known that any (0,t)-advising scheme satisfies t (n). Our main result is the construction of an (O(1),O(log n))-advising scheme for MST. That is, by only giving a constant number of bits of advice to each node, one can decrease exponentially the distributed computation time of MST in arbitrary graph, compared to algorithms dealing with the problem in absence of any a priori information. We also consider the average size of the advices. On the one hand, we show that any (m,0)-advising scheme for MST gives advices of average size (log n). On the other hand we design an (m,1)-advising scheme for MST with advices of constant average size, that is one round is enough to decrease the average size of the advices from log(n) to constant.
AB - We use the recently introduced advising scheme framework for measuring the difficulty of locally distributively computing a Minimum Spanning Tree (MST). An (m,t)-advising scheme for a distributed problem P is a way, for every possible input I of P, to provide an "advice" (i.e., a bit string) about I to each node so that: (1) the maximum size of the advices is at most m bits, and (2) the problem P can be solved distributively in at most t rounds using the advices as inputs. In case of MST, the output returned by each node of a weighted graph G is the edge leading to its parent in some rooted MST T of G. Clearly, there is a trivial (log n,0)-advising scheme for MST (each node is given the local port number of the edge leading to the root of some MST T), and it is known that any (0,t)-advising scheme satisfies t (n). Our main result is the construction of an (O(1),O(log n))-advising scheme for MST. That is, by only giving a constant number of bits of advice to each node, one can decrease exponentially the distributed computation time of MST in arbitrary graph, compared to algorithms dealing with the problem in absence of any a priori information. We also consider the average size of the advices. On the one hand, we show that any (m,0)-advising scheme for MST gives advices of average size (log n). On the other hand we design an (m,1)-advising scheme for MST with advices of constant average size, that is one round is enough to decrease the average size of the advices from log(n) to constant.
KW - Distributed algorithm
KW - Local computation
KW - Minimum spanning tree
UR - http://www.scopus.com/inward/record.url?scp=35248882024&partnerID=8YFLogxK
U2 - 10.1145/1248377.1248402
DO - 10.1145/1248377.1248402
M3 - Conference contribution
AN - SCOPUS:35248882024
SN - 159593667X
SN - 9781595936677
T3 - Annual ACM Symposium on Parallelism in Algorithms and Architectures
SP - 154
EP - 160
BT - SPAA'07
T2 - SPAA'07: 19th Annual Symposium on Parallelism in Algorithms and Architectures
Y2 - 9 June 2007 through 11 June 2007
ER -