LLMRefine: Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback

Wenda Xu, Daniel Deutsch, Mara Finkelstein, Juraj Juraska, Biao Zhang, Zhongtao Liu, William Yang Wang, Lei Li, Markus Freitag

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Recent large language models (LLM) are leveraging human feedback to improve their generation quality. However, human feedback is costly to obtain, especially during inference. In this work, we propose LLMRefine, an inference time optimization method to refine LLM's output. The core idea is to use a learned fine-grained feedback model to pinpoint defects and guide LLM to refine them iteratively. Using original LLM as a proposal of edits, LLMRefine searches for defect-less text via simulated annealing, trading off the exploration and exploitation. We conduct experiments on three text generation tasks, including machine translation, long-form question answering (QA), and topical summarization. LLMRefine consistently outperforms all baseline approaches, achieving improvements up to 1.7 MetricX points on translation tasks, 8.1 ROUGE-L on ASQA, 2.2 ROUGE-L on topical summarization.

Original languageEnglish
Title of host publicationFindings of the Association for Computational Linguistics
Subtitle of host publicationNAACL 2024 - Findings
EditorsKevin Duh, Helena Gomez, Steven Bethard
PublisherAssociation for Computational Linguistics (ACL)
Pages1429-1445
Number of pages17
ISBN (Electronic)9798891761193
DOIs
StatePublished - 2024
Externally publishedYes
Event2024 Findings of the Association for Computational Linguistics: NAACL 2024 - Mexico City, Mexico
Duration: 16 Jun 202421 Jun 2024

Publication series

NameFindings of the Association for Computational Linguistics: NAACL 2024 - Findings

Conference

Conference2024 Findings of the Association for Computational Linguistics: NAACL 2024
Country/TerritoryMexico
CityMexico City
Period16/06/2421/06/24

Bibliographical note

Publisher Copyright:
© 2024 Association for Computational Linguistics.

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Software

Fingerprint

Dive into the research topics of 'LLMRefine: Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback'. Together they form a unique fingerprint.

Cite this