Lifting with Inner Functions of Polynomial Discrepancy

Yahel Manor, Or Meir

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Lifting theorems are theorems that bound the communication complexity of a composed function fogn in terms of the query complexity of f and the communication complexity of g. Such theorems constitute a powerful generalization of direct-sum theorems for g, and have seen numerous applications in recent years. We prove a new lifting theorem that works for every two functions f, g such that the discrepancy of g is at most inverse polynomial in the input length of f. Our result is a significant generalization of the known direct-sum theorem for discrepancy, and extends the range of inner functions g for which lifting theorems hold.

Original languageEnglish
Title of host publicationApproximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2022
EditorsAmit Chakrabarti, Chaitanya Swamy
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959772495
DOIs
StatePublished - 1 Sep 2022
Event25th International Conference on Approximation Algorithms for Combinatorial Optimization Problems and the 26th International Conference on Randomization and Computation, APPROX/RANDOM 2022 - Virtual, Urbana-Champaign, United States
Duration: 19 Sep 202221 Sep 2022

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume245
ISSN (Print)1868-8969

Conference

Conference25th International Conference on Approximation Algorithms for Combinatorial Optimization Problems and the 26th International Conference on Randomization and Computation, APPROX/RANDOM 2022
Country/TerritoryUnited States
CityVirtual, Urbana-Champaign
Period19/09/2221/09/22

Bibliographical note

Publisher Copyright:
© Yahel Manor and Or Meir.

Keywords

  • Lifting
  • communication complexity
  • discrepancy
  • query complexity

ASJC Scopus subject areas

  • Software

Fingerprint

Dive into the research topics of 'Lifting with Inner Functions of Polynomial Discrepancy'. Together they form a unique fingerprint.

Cite this