Learning relational features with backward random walks

Ni Lao, Einat Minkov, William W. Cohen

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The path ranking algorithm (PRA) has been recently proposed to address relational classification and retrieval tasks at large scale. We describe Cor-PRA, an enhanced system that can model a larger space of relational rules, including longer relational rules and a class of first order rules with constants, while maintaining scalability. We describe and test faster algorithms for searching for these features. A key contribution is to leverage backward random walks to efficiently discover these types of rules. An empirical study is conducted on the tasks of graph-based knowledge base inference, and person named entity extraction from parsed text. Our results show that learning paths with constants improves performance on both tasks, and that modeling longer paths dramatically improves performance for the named entity extraction task.

Original languageEnglish
Title of host publicationACL-IJCNLP 2015 - 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, Proceedings of the Conference
PublisherAssociation for Computational Linguistics (ACL)
Pages666-675
Number of pages10
ISBN (Electronic)9781941643723
DOIs
StatePublished - 2015
Event53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, ACL-IJCNLP 2015 - Beijing, China
Duration: 26 Jul 201531 Jul 2015

Publication series

NameACL-IJCNLP 2015 - 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, Proceedings of the Conference
Volume1

Conference

Conference53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, ACL-IJCNLP 2015
Country/TerritoryChina
CityBeijing
Period26/07/1531/07/15

Bibliographical note

Publisher Copyright:
© 2015 Association for Computationl Linguisticss.

ASJC Scopus subject areas

  • Artificial Intelligence
  • Software

Fingerprint

Dive into the research topics of 'Learning relational features with backward random walks'. Together they form a unique fingerprint.

Cite this