Abstract
The morphology of Semitic languages is unique in the sense that the major word-formation mechanism is an inherently non-concatenative process of interdigitation, whereby two morphemes, a root and a pattern, are interwoven. Identifying the root of a given word in a Semitic language is an important task, in some cases a crucial part of morphological analysis. It is also a non-trivial task, which many humans find challenging. We present a machine learning approach to the problem of extracting roots of Hebrew words. Given the large number of potential roots (thousands), we address the problem as one of combining several classifiers, each predicting the value of one of the root's consonants. We show that when these predictors are combined by enforcing some fairly simple linguistics constraints, high accuracy, which compares favorably with human performance on this task, can be achieved.
Original language | English |
---|---|
Pages | 357-364 |
Number of pages | 8 |
State | Published - 2004 |
Event | 2004 Conference on Empirical Methods in Natural Language Processing, EMNLP 2004 - Barcelona, Spain Duration: 25 Jul 2004 → 26 Jul 2004 |
Conference
Conference | 2004 Conference on Empirical Methods in Natural Language Processing, EMNLP 2004 |
---|---|
Country/Territory | Spain |
City | Barcelona |
Period | 25/07/04 → 26/07/04 |
Bibliographical note
Publisher Copyright:© 2005 Association for Computational Linguistics
ASJC Scopus subject areas
- Computational Theory and Mathematics
- Computer Science Applications
- Information Systems