Abstract
We introduce a weakly supervised approach for inferring the property of abstractness of words and expressions in the complete absence of labeled data. Exploiting only minimal linguistic clues and the contextual usage of a concept as manifested in textual data, we train sufficiently powerful classifiers, obtaining high correlation with human labels. The results imply the applicability of this approach to additional properties of concepts, additional languages, and resource-scarce scenarios.
Original language | English |
---|---|
Title of host publication | Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018 |
Editors | Ellen Riloff, David Chiang, Julia Hockenmaier, Jun'ichi Tsujii |
Publisher | Association for Computational Linguistics |
Pages | 4854-4859 |
Number of pages | 6 |
ISBN (Electronic) | 9781948087841 |
State | Published - 2018 |
Externally published | Yes |
Event | 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018 - Brussels, Belgium Duration: 31 Oct 2018 → 4 Nov 2018 |
Publication series
Name | Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018 |
---|
Conference
Conference | 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018 |
---|---|
Country/Territory | Belgium |
City | Brussels |
Period | 31/10/18 → 4/11/18 |
Bibliographical note
Publisher Copyright:© 2018 Association for Computational Linguistics
ASJC Scopus subject areas
- Computational Theory and Mathematics
- Computer Science Applications
- Information Systems