Learning concept abstractness using weak supervision

Ella Rabinovich, Benjamin Sznajder, Artem Spector, Ilya Shnayderman, Ranit Aharonov, David Konopnicki, Noam Slonim

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We introduce a weakly supervised approach for inferring the property of abstractness of words and expressions in the complete absence of labeled data. Exploiting only minimal linguistic clues and the contextual usage of a concept as manifested in textual data, we train sufficiently powerful classifiers, obtaining high correlation with human labels. The results imply the applicability of this approach to additional properties of concepts, additional languages, and resource-scarce scenarios.

Original languageEnglish
Title of host publicationProceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018
EditorsEllen Riloff, David Chiang, Julia Hockenmaier, Jun'ichi Tsujii
PublisherAssociation for Computational Linguistics
Pages4854-4859
Number of pages6
ISBN (Electronic)9781948087841
StatePublished - 2018
Externally publishedYes
Event2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018 - Brussels, Belgium
Duration: 31 Oct 20184 Nov 2018

Publication series

NameProceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018

Conference

Conference2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018
Country/TerritoryBelgium
CityBrussels
Period31/10/184/11/18

Bibliographical note

Publisher Copyright:
© 2018 Association for Computational Linguistics

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Computer Science Applications
  • Information Systems

Fingerprint

Dive into the research topics of 'Learning concept abstractness using weak supervision'. Together they form a unique fingerprint.

Cite this