Large Scale Dataset Distillation with Domain Shift

Noel Loo, Alaa Maalouf, Ramin Hasani, Mathias Lechner, Alexander Amini, Daniel Rus

Research output: Contribution to journalConference articlepeer-review

Abstract

Dataset Distillation seeks to summarize a large dataset by generating a reduced set of synthetic samples. While there has been much success at distilling small datasets such as CIFAR-10 on smaller neural architectures, Dataset Distillation methods fail to scale to larger high-resolution datasets and architectures. In this work, we introduce Dataset Distillation with Domain Shift (D3S), a scalable distillation algorithm, made by reframing the dataset distillation problem as a domain shift one. In doing so, we derive a universal bound on the distillation loss, and provide a method for efficiently approximately optimizing it. We achieve state-of-the-art results on Tiny-ImageNet, ImageNet-1k, and ImageNet-21K over a variety of recently proposed baselines, including high cross-architecture generalization. Additionally, our ablation studies provide lessons on the importance of validation-time hyperparameters on distillation performance, motivating the need for standardization.

Original languageEnglish
Pages (from-to)32759-32780
Number of pages22
JournalProceedings of Machine Learning Research
Volume235
StatePublished - 2024
Externally publishedYes
Event41st International Conference on Machine Learning, ICML 2024 - Vienna, Austria
Duration: 21 Jul 202427 Jul 2024

Bibliographical note

Publisher Copyright:
Copyright 2024 by the author(s)

ASJC Scopus subject areas

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'Large Scale Dataset Distillation with Domain Shift'. Together they form a unique fingerprint.

Cite this