Investigation of glucosinolates in the desert plant Ochradenus baccatus (Brassicales: Resedaceae). Unveiling glucoochradenin, a new arabinosylated glucosinolate

Beny Trabelcy, Nicka Chinkov, Michal Samuni-Blank, Mayan Merav, Ido Izhaki, Shmuel Carmeli, Yoram Gerchman

Research output: Contribution to journalArticlepeer-review

Abstract

Here we describe the structure elucidation and quantification of six glucosinolates (GSLs) from the roots of the desert plant Ochradenus baccatus, Delile 1813 (family Resedaceae; order Brassicales). The structure elucidation was established on the corresponding enzymatically desulfated derivatives of the native GSLs of the plant. Among these GSLs we describe the previously undescribed 2″-O-(α-L-arabinopyranosyloxy)benzylglucosinolate (1a), for which we propose the name glucoochradenin. The other five glucosinolates (2a-6a) were (2S)-2-hydroxy-2-phenylethylglucosinolate (2a; glucobarbarin), 2″-O-(α-L-rhamnopyranosyloxy)benzylglucosinolate (3a), benzylglucosinolate (4a; glucotropaeolin), indol-3-ylmethylglucosinolate (5a; glucobrassicin) and phenethylglucosinolate (6a; gluconasturtiin), all elucidated as their desulfo-derivatives, 2b-6b respectively). Structures were elucidated by MS and 1D and 2D-NMR techniques, the identity of the arabinose verified by ion chromatography, and the absolute configuration of the sugar units determined by hydrolysis, coupling to cysteine methyl-ester and phenyl isothiocyanate followed by HPLC-MS analysis of the resulted diastereomers. Response factors were generated for desulfo-2″-O-(α-L-arabinopyranosyloxy)benzylglucosinolate and for desulfo-2″-O-(α-L-rhamnopyranosyloxy)benzylglucosinolate and all six GSLs were quantified, indicating that the root of O. baccatus is rich in GSLs (Avg. 61.3 ± 10.0 μmol/g DW and up to 337.2 μmol/g DW).

Original languageEnglish
Article number112760
JournalPhytochemistry
Volume187
DOIs
StatePublished - Jul 2021

Bibliographical note

Publisher Copyright:
© 2021 Elsevier Ltd

Keywords

  • Aromatic glucosinolates
  • Desert plants
  • Glycosylated glucosinolates
  • NMR
  • Ochradenus baccatus (Resedaceae)
  • Quantitative variation
  • Response factors
  • Root
  • Structure elucidation

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Plant Science
  • Horticulture

Fingerprint

Dive into the research topics of 'Investigation of glucosinolates in the desert plant Ochradenus baccatus (Brassicales: Resedaceae). Unveiling glucoochradenin, a new arabinosylated glucosinolate'. Together they form a unique fingerprint.

Cite this