Invertible zero-error dispersers and defective memory with stuck-at errors

Ariel Gabizon, Ronen Shaltiel

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Kuznetsov and Tsybakov [11] considered the problem of storing information in a memory where some cells are 'stuck' at certain values. More precisely, For 0 < r,p < 1 we want to store a string z ∈ {0,1} rn in an n-bit memory x = (x 1,...,x n) in which a subset S ⊆[n] of size pn are stuck at certain values u 1,...,u pn and cannot be modified. The encoding procedure receives S, u 1, u pn and z and can modify the cells outside of S. The decoding procedure should be able to recover z given x (without having to know S or u 1,...,u pn). This problem is related to, and harder than, the Write-Once-Memory (WOM) problem. We give explicit schemes with rate r ≥ 1 - p - o(1) (trivially, r ≤ 1 - p is a lower bound). This is the first explicit scheme with asymptotically optimal rate. We are able to guarantee the same rate even if following the encoding, the memory x is corrupted in o(√n) adversarially chosen positions. This more general setup was first considered by Tsybakov [24] (see also [10,8]). and our scheme improves upon previous results. We utilize a recent connection observed by Shpilka [21] between the WOM problem and linear seeded extractors for bit-fixing sources. We generalize this observation and show that memory schemes for stuck-at memory are equivalent to zero-error seedless dispersers for bit-fixing sources. We furthermore show that using zero-error seedless dispersers for affine sources (together with linear error correcting codes with large dual distance) allows the scheme to also handle adversarial errors. It turns out that explicitness of the disperser is not sufficient for the explicitness of the memory scheme. We also need that the disperser is efficiently invertible, meaning that given an output z and the linear equations specifying a bit-fixing/affine source, one can efficiently produce a string x in the support of the source on which the disperser outputs z. In order to construct our memory schemes, we give new constructions of zero-error seedless dispersers for bit-fixing sources and affine sources. These constructions improve upon previous work by [14,6,2,25,13] in that for sources with min-entropy k, they (i) achieve larger output length m = (1 - o(1))·k whereas previous constructions did not, and (ii) are efficiently invertible, whereas previous constructions do not seem to be easily invertible.

Original languageEnglish
Title of host publicationApproximation, Randomization, and Combinatorial Optimization
Subtitle of host publicationAlgorithms and Techniques - 15th International Workshop, APPROX 2012, and 16th International Workshop, RANDOM 2012, Proceedings
Pages553-564
Number of pages12
DOIs
StatePublished - 2012
Event15th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2012 and the 16th International Workshop on Randomization and Computation, RANDOM 2012 - Cambridge, MA, United States
Duration: 15 Aug 201217 Aug 2012

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume7408 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference15th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2012 and the 16th International Workshop on Randomization and Computation, RANDOM 2012
Country/TerritoryUnited States
CityCambridge, MA
Period15/08/1217/08/12

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science (all)

Fingerprint

Dive into the research topics of 'Invertible zero-error dispersers and defective memory with stuck-at errors'. Together they form a unique fingerprint.

Cite this