Abstract
The size structure of a larval population facilitates interaction asymmetries that, in turn, influence the dynamics of size-structure. In species that exhibit conspicuous aggressive interactions, the competitive effects of the smaller individuals may be overlooked. We manipulated initial size differences between two larval cohorts and young-cohort density of Salamandra infraimmaculata in mesocosms to determine: (1) whether young individuals function primarily as prey or as competitors of older and larger individuals; (2) the resulting dynamics of size variation; and (3) recruitment to the postmetamorph population. Intercohort size differences generally remained constant over time at low young-cohort densities, but reduced over time at high densities due to retardation of the old-cohort growth rate. This suggests a competitive advantage to the young cohort that outweighs the interference advantage of older cohorts previously documented in this species. The increase in mortality from desiccation due to high young-cohort density was an order of magnitude greater in the old cohort than in the young-cohort, further indicating size-dependent vulnerability to competition. However, the conditions least favorable to most of the old-cohort larvae (large size difference and high young-cohort density) promoted cannibalism. Among cannibals, mortality and time to metamorphosis decreased and sizes at metamorphosis increased substantially. Thus, a balance between the competitive advantage to young cohorts, and the interference and cannibalism advantage to old cohorts shapes larval size-structure dynamics. Larval densities and individual expression of cannibalism can shift this balance in opposite directions and alter relative recruitment rates from different cohorts.
Original language | English |
---|---|
Pages (from-to) | 425-433 |
Number of pages | 9 |
Journal | Oecologia |
Volume | 179 |
Issue number | 2 |
DOIs | |
State | Published - 22 Oct 2015 |
Bibliographical note
Publisher Copyright:© 2015, Springer-Verlag Berlin Heidelberg.
Keywords
- Amphibians
- Exploitative competition
- Fire salamander
- Niche shifts
- Priority effects
ASJC Scopus subject areas
- Ecology, Evolution, Behavior and Systematics