Incompressible functions, relative-error extractors, and the power of nondeterministic reductions (extended abstract)

Benny Applebaum, Sergei Artemenko, Ronen Shaltiel, Guang Yang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

A circuit C compresses a function f: {0, 1}n → {0, 1}m if given an input x ∈ {0, 1}n the circuit C can shrink x to a shorter ℓ-bit string x' such that later, a computationally-unbounded solver D will be able to compute f(x) based on x'. In this paper we study the existence of functions which are incompressible by circuits of some fixed polynomial size s = nc. Motivated by cryptographic applications, we focus on average-case (ℓ, ∈) incompressibility, which guarantees that on a random input x ∈ {0, 1}n, for every size s circuit C: {0, 1}n → {0, 1}ℓ and any unbounded solver D, the success probability Prx[D(C(x)) = f(x)] is upper-bounded by 2-m + ∈. While this notion of incompressibility appeared in several works (e.g., Dubrov and Ishai [12]), so far no explicit constructions of efficiently computable incompressible functions were known. In this work we present the following results: 1. Assuming that E is hard for exponential size nondeterministic circuits, we construct a polynomial time computable boolean function f: {0, 1}n → {0, 1} which is incompressible by size nc circuits with communication ℓ = (1 - o(1)) · n and error ∈ = n-c. Our technique generalizes to the case of PRGs against nonboolean circuits, improving and simplifying the previous construction of Shaltiel and Artemenko [5]. 2. We show that it is possible to achieve negligible error parameter ∈ = n-→(1) for nonboolean functions. Specifically, assuming that E is hard for exponential size Σ3-circuits, we construct a nonboolean function f: {0, 1}n → {0, 1}m which is incompressible by size nc circuits with ℓ = (n) and extremely small ∈ = n-c · 2-m. Our construction combines the techniques of Trevisan and Vadhan [47] with a new notion of relative error deterministic extractor which may be of independent interest. 3. We show that the task of constructing an incompressible boolean function f: {0, 1}n → {0, 1} with negligible error parameter ∈ cannot be achieved by "existing proof techniques". Namely, nondeterministic reductions (or even Σi reductions) cannot get ∈ = n-ω(1) for boolean incompressible functions. Our results also apply to constructions of standard Nisan-Wigderson type PRGs and (standard) boolean functions that are hard on average, explaining, in retrospective, the limitations of existing constructions. Our impossibility result builds on an approach of Shaltiel and Viola [40].

Original languageEnglish
Title of host publication30th Conference on Computational Complexity, CCC 2015
EditorsDavid Zuckerman
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
Pages582-600
Number of pages19
ISBN (Electronic)9783939897811
DOIs
StatePublished - 1 Jun 2015
Event30th Conference on Computational Complexity, CCC 2015 - Portland, United States
Duration: 17 Jun 201519 Jun 2015

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume33
ISSN (Print)1868-8969

Conference

Conference30th Conference on Computational Complexity, CCC 2015
Country/TerritoryUnited States
CityPortland
Period17/06/1519/06/15

Bibliographical note

Publisher Copyright:
© Benny Applebaum, Sergei Artemenko, Ronen Shaltiel, and Guang Yang; licensed under Creative Commons License CC-BY.

Keywords

  • Compression
  • Extractors
  • Nondeterministic reductions
  • Pseudorandomness

ASJC Scopus subject areas

  • Software

Fingerprint

Dive into the research topics of 'Incompressible functions, relative-error extractors, and the power of nondeterministic reductions (extended abstract)'. Together they form a unique fingerprint.

Cite this