If NP languages are hard on the worst-case then it is easy to find their hard instances

Dan Gutfreund, Ronen Shaltiel, Amnon Ta-Shma

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We prove that if NP ⊈ BPP, i.e., if some NP-complete language is worst-case hard, then for every probabilistic algorithm trying to decide the language, there exists some polynomially samplable distribution that is hard for it. That is, the algorithm often errs on inputs from this distribution. This is the first worst-case to average-case reduction for NP of any kind. We stress however, that this does not mean that there exists one fixed samplable distribution that is hard for all probabilistic polynomial time algorithms, which is a pre-requisite assumption needed for OWF and cryptography (even if not a sufficient assumption). Nevertheless, we do show that there is a fixed distribution on instances of NP-complete languages, that is samplable in quasi-polynomial time and is hard for all probabilistic polynomial time algorithms (unless NP is easy in the worst-case). Our results are based on the following lemma that may be of independent interest: Given the description of an efficient (probabilistic) algorithm that fails to solve SAT in the worst-case, we can efficiently generate at most three Boolean formulas (of increasing lengths) such that the algorithm errs on at least one of them.

Original languageEnglish
Title of host publicationProceedings of the 20th Annual IEEE Conference on Computational Complexity
Pages243-257
Number of pages15
DOIs
StatePublished - 2005
Event20th Annual IEEE Conference on Computational Complexity - San Jose, CA, United States
Duration: 11 Jun 200515 Jun 2005

Publication series

NameProceedings of the Annual IEEE Conference on Computational Complexity
ISSN (Print)1093-0159

Conference

Conference20th Annual IEEE Conference on Computational Complexity
Country/TerritoryUnited States
CitySan Jose, CA
Period11/06/0515/06/05

ASJC Scopus subject areas

  • Software
  • Theoretical Computer Science
  • Computational Mathematics

Fingerprint

Dive into the research topics of 'If NP languages are hard on the worst-case then it is easy to find their hard instances'. Together they form a unique fingerprint.

Cite this