Abstract
The blind subterranean mole rat Spalax shows a remarkable tolerance to hypoxia, cancer-resistance and longevity. Unravelling the genomic basis of these adaptations will be important for biomedical applications. RNA-Seq gene expression data were obtained from normoxic and hypoxic Spalax and rat liver tissue. Hypoxic Spalax broadly downregulates genes from major liver function pathways. This energy-saving response is likely a crucial adaptation to low oxygen levels. In contrast, the hypoxia-sensitive rat shows massive upregulation of energy metabolism genes. Candidate genes with plausible connections to the mole rat's phenotype, such as important key genes related to hypoxia-tolerance, DNA damage repair, tumourigenesis and ageing, are substantially higher expressed in Spalax than in rat. Comparative liver transcriptomics highlights the importance of molecular adaptations at the gene regulatory level in Spalax and pinpoints a variety of starting points for subsequent functional studies.
Original language | English |
---|---|
Article number | 14348 |
Journal | Scientific Reports |
Volume | 7 |
Issue number | 1 |
DOIs | |
State | Published - 1 Dec 2017 |
Bibliographical note
Funding Information:H.S. and T.H. acknowledge financial support by the University of Mainz Center for Computational Sciences (SRFN) and the Stiftung Innovation Rhineland-Palatinate (1049). A.A., I.S. and A.M. acknowledge financial support from the John Templeton Foundation, USA (grant #53057) and the donation of Mr. Peter Kadas, UK. We thank Bettina Weich for performing RNA preparation, Dr. Steffen Rapp for operating the Illumina HiSeq machine and Dr. Dennis Strand (University Medical School Mainz) for critical reading of the manuscript.
Publisher Copyright:
© 2017 The Author(s).
ASJC Scopus subject areas
- General