Abstract
Chaperone protein Hsp90 maintains functional integrity and maturation of a large number of cellular proteins including transcription factors, kinases, etc. It is often over-expressed in cancer cells for simultaneous maintenance of many non-regulated and/or genetically mutated proteins. Small molecule-based regimens inhibiting over-expressing Hsp90 in cancer cells often plagued with improper targeting leading to non-specific toxicity. Recently using a glucocorticoid receptor (GR)-targeted cationic lipoplex, we observed cancer cell-specific GR-transactivation and transgene expression by utilizing an unprecedentedly compromised chaperone-activity of cancer cell-associated Hsp90. In normal cells, GR is expressed ubiquitously and is highly regulated and chaperoned by Hsp90. This does not allow cancer cell-alike GR-mediated transgene expression. As a novel anticancer strategy, we showed that compromising Hsp90 in cancer cells can be utilized to selectively deplete its own level by delivering a specially designed artificial miRNA-plasmid against Hsp90 (amiR-Hsp90). Practically, GR-mediated delivery of amiR-Hsp90 plasmid in tumor-bearing mice, depleted Hsp90, critically down-regulated levels of Akt, VEGFR2 and other Hsp90-client proteins but up-regulated wild-type p53 in tumor. These enforced apoptosis in angiogenic vessels and in tumor mass and significantly shrunk tumor-volume. The present study describes gene therapy strategy against Hsp90 using a new GR-targeted liposome-amiR-Hsp90 lipoplex formulation for treating cancer.
Original language | English |
---|---|
Pages (from-to) | 6804-6817 |
Number of pages | 14 |
Journal | Biomaterials |
Volume | 34 |
Issue number | 28 |
DOIs | |
State | Published - Sep 2013 |
Externally published | Yes |
Keywords
- Akt
- Cancer
- Glucocorticoid receptor
- Hsp90
- Liposome
- P53
ASJC Scopus subject areas
- Biophysics
- Bioengineering
- Ceramics and Composites
- Biomaterials
- Mechanics of Materials