Holocene evolution of the Danube delta: An integral reconstruction and a revised chronology

Alfred Vespremeanu-Stroe, Florin Zăinescu, Luminiţa Preoteasa, Florin Tătui, Sabin Rotaru, Christophe Morhange, Marius Stoica, Jenică Hanganu, Alida Timar-Gabor, Ionela Cârdan, Natalia Piotrowska

Research output: Contribution to journalArticlepeer-review


The Danube delta is one of the few large deltas in the world the evolution of which has involved numerous and varied episodes within a complex framework of interactivity between river sediment supply, allochthonous sediments supplied by longshore currents, marine dispersing forces, vertical movements (neotectonics, sediment compaction) and sea level. The resulting complex morphology comprises diversified landscapes varying from labyrinthic net of channels and lakes (fluvial delta) to massive tracts of monotonous reed marshes, large lagoons divided by barriers, or beach-ridge plains accommodating large transgressive dunefields (maritime delta). Whilst previous studies have focused on various sectors of the Danube delta, the current paper proposes for the first time an integral reconstruction of delta evolution based on existing and new sedimentological and morphological analyses and absolute ages (AMS 14C and OSL), enabling a comprehensive synthesis in terms of both evolutionary phases and growth patterns. A chronological framework was established for all the deltaic lobes and beach-ridge plains, highlighting the relationship between formation timespan, growth rates, and the resultant morphology. This work unveils the early stage of delta formation, including the reconstruction of delta front advancement into Danube Bay (Old Danube lobe: prior to 7.5–5.5 ka) and initial spit/barrier development (6.7/6.5–5.8 ka). Inception of the bayhead delta started > 1000 yr before the relative stabilization of sea level and of the initial spit formation. The original fluvial delta plain topography is now buried at a depth of 4–6 m depth below the present topography (representing the current stage of fluvial aggradation), as a result of subsidence and sea-level rise. Regarding the maritime delta, six large open-coast lobes developed in the last six millennia, of which four were formed by the Sf. Gheorghe branch, attesting the long uninterrupted activity of this branch, whereas the other two were created respectively by the Sulina and the Chilia branches. The evolution of each lobe is derived from successive (chronological) shoreline positions and discussed in relation with changes in Danube discharge. Special attention has been paid to their growth stages and progradation rates. For the southern delta, we bring in new arguments for an active southern distributary (the Dunavăţ, derived from the Sf. Gheorghe branch) that formed successive open-coast lobes between 2.6 and 1.3 ka. Additionally, we discuss the effects of modern anthropogenically-driven fluvial sediment reduction on the morphology and morphodynamics of the active lobes of the Danube.

Original languageEnglish
Pages (from-to)38-61
Number of pages24
JournalMarine Geology
StatePublished - 1 Jun 2017
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2017


  • Deltaic lobe
  • Large deltas
  • Sea-level rise
  • Spit barriers
  • Subsidence

ASJC Scopus subject areas

  • Oceanography
  • Geology
  • Geochemistry and Petrology


Dive into the research topics of 'Holocene evolution of the Danube delta: An integral reconstruction and a revised chronology'. Together they form a unique fingerprint.

Cite this