Abstract
Dynamical phase transitions are defined as nonanalytic points of the large deviation function of current fluctuations. We show that for boundary-driven systems, many dynamical phase transitions can be identified using the geometrical structure of an effective potential of a Hamiltonian, recovered from the macroscopic fluctuation theory description. Using this method we identify new dynamical phase transitions that could not be recovered using existing perturbative methods. Moreover, using the Hamiltonian picture, an experimental scheme is suggested to demonstrate an analog of dynamical phase transitions in linear, rather than exponential, time.
Original language | English |
---|---|
Article number | 062108 |
Journal | Physical Review E |
Volume | 96 |
Issue number | 6 |
DOIs | |
State | Published - 5 Dec 2017 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2017 American Physical Society.
ASJC Scopus subject areas
- Statistical and Nonlinear Physics
- Statistics and Probability
- Condensed Matter Physics