Genetic characteristics of soybean resistance to HG type 0 and HG type 1.2.3.5.7 of the cyst nematode analyzed by genome-wide association mapping

Yingpeng Han, Xue Zhao, Guanglu Cao, Yan Wang, Yinghui Li, Dongyuan Liu, Weili Teng, Zhiwu Zhang, Dongmei Li, Lijuan Qiu, Hongkun Zheng, Wenbin Li

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is one of the most fatal pests of soybean (Glycine max (L.) Merr.) worldwide and causes huge loss of soybean yield each year. Multiple sources of resistance are urgently needed for effective management of SCN via the development of resistant cultivars. The aim of the present study was to investigate the genetic architecture of resistance to SCN HG Type 0 (race 3) and HG Type 1.2.3.5.7 (race 4) in landraces and released elite soybean cultivars mostly from China. Results: A total of 440 diverse soybean landraces and elite cultivars were screened for resistance to SCN HG Type 0 and HG Type 1.2.3.5.7. Exactly 131 new sources of SCN resistance were identified. Lines were genotyped by SNP markers detected by the Specific Locus Amplified Fragment Sequencing (SLAF-seq) approach. A total of 36,976 SNPs were identified with minor allele frequencies (MAF) > 4% that were present in 97% of all the genotypes. Genome-wide association mapping showed that a total of 19 association signals were significantly related to the resistance for the two HG Types. Of the 19 association signals, eight signals overlapped with reported QTL including Rhg1 and Rhg4 genes. Another eight were located in the linked regions encompassing known QTL. Three QTL were found that were not previously reported. The average value of female index (FI) of soybean accessions with resistant alleles was significantly lower than those with susceptible alleles for each peak SNP. Disease resistance proteins with leucine rich regions, cytochrome P450s, protein kinases, zinc finger domain proteins, RING domain proteins, MYB and WRKY transcription activation families were identified. Such proteins may participate in the resistant reaction to SCN and were frequently found in the tightly linked genomic regions of the peak SNPs. Conclusions: GWAS extended understanding of the genetic architecture of SCN resistance in multiple genetic backgrounds. Nineteen association signals were obtained for the resistance to the two Hg Types of SCN. The multiple beneficial alleles from resistant germplasm sources will be useful for the breeding of cultivars with improved resistance to SCN. Analysis of genes near association signals may facilitate the recognition of the causal gene(s) underlying SCN resistances.

Original languageEnglish
Article number598
JournalBMC Genomics
Volume16
Issue number1
DOIs
StatePublished - 13 Aug 2015
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2015 Han et al.

Keywords

  • Genome-wide association study
  • Heterodera glycines
  • HG Types
  • SCN resistance

ASJC Scopus subject areas

  • Biotechnology
  • Genetics

Fingerprint

Dive into the research topics of 'Genetic characteristics of soybean resistance to HG type 0 and HG type 1.2.3.5.7 of the cyst nematode analyzed by genome-wide association mapping'. Together they form a unique fingerprint.

Cite this