Abstract
The performance of the built environment is an important concern affecting the quality of life and plays a critical role in every urban milieu. However, it generally disappears in the drawing plans. Current planning regulations do not always include performance requirements as part of the planning demands. Additionally, decision-makers lack the methodology and tools to demonstrate the expected performance of the built environment. Therefore, an examination of the performance of the designed area is sometimes neglected in the planning process. Current urban plans focus mainly on technical issues, counting the number of residential units, density measures, etc. The trend of progressive planning regulations, such as Form-Based Code (FBC), aims to coordinate these separated quantitative parameters into one comprehensive 3D plan where the urban form plays as a main integrator. However, these plans still lack the demand for understanding the quality and performance of the built environment through the visualization. This article addresses this gap, the lack of understanding of the performance of the built environment in urban plans and proposes the concept of Performance-Based Codes (PBC). The transition from form-based code to performance-based-design will be demonstrated through the presentation of two performance-based models, the Solar Envelope and Security Rating Index, and the possibility of integrating them into the planning process.
Original language | English |
---|---|
Article number | 5657 |
Journal | Sustainability (Switzerland) |
Volume | 12 |
Issue number | 14 |
DOIs | |
State | Published - Jul 2020 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2020 by the authors.
Keywords
- Architectural design
- Building assessment
- Built environment
- Performance
- Planning process
- Urban evaluation
ASJC Scopus subject areas
- Geography, Planning and Development
- Renewable Energy, Sustainability and the Environment
- Environmental Science (miscellaneous)
- Energy Engineering and Power Technology
- Management, Monitoring, Policy and Law