Abstract
Reliable human evaluation is critical to the development of successful natural language generation models, but achieving it is notoriously difficult. Stability is a crucial requirement when ranking systems by quality: consistent ranking of systems across repeated evaluations is not just desirable, but essential. Without it, there is no reliable foundation for hill-climbing or product launch decisions. In this paper, we use machine translation and its state-of-the-art human evaluation framework, MQM, as a case study to understand how to set up reliable human evaluations that yield stable conclusions. We investigate the optimal configurations for item allocation to raters, number of ratings per item, and score normalization. Our study on two language pairs provides concrete recommendations for designing replicable human evaluation studies. We also collect and release the largest publicly available dataset of multi-segment translations rated by multiple professional translators, consisting of nearly 140,000 segment annotations across two language pairs.
Original language | English |
---|---|
Title of host publication | Long Papers |
Editors | Kevin Duh, Helena Gomez, Steven Bethard |
Publisher | Association for Computational Linguistics (ACL) |
Pages | 4908-4919 |
Number of pages | 12 |
ISBN (Electronic) | 9798891761148 |
DOIs | |
State | Published - 2024 |
Externally published | Yes |
Event | 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2024 - Hybrid, Mexico City, Mexico Duration: 16 Jun 2024 → 21 Jun 2024 |
Publication series
Name | Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2024 |
---|---|
Volume | 1 |
Conference
Conference | 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2024 |
---|---|
Country/Territory | Mexico |
City | Hybrid, Mexico City |
Period | 16/06/24 → 21/06/24 |
Bibliographical note
Publisher Copyright:©2024 Association for Computational Linguistics.
ASJC Scopus subject areas
- Computer Networks and Communications
- Hardware and Architecture
- Information Systems
- Software