Abstract
This study aimed to determine the distinct contribution of slow (11-13. Hz) and fast (13-15. Hz) spindles in the consolidation process of a motor sequence learning task (MSL). Young subjects (n = 12) were trained on both a finger MSL task and a control (CTRL) condition, which were administered one week apart in a counterbalanced order. Subjects were asked to practice the MSL or CTRL task in the evening (approximately 9:00. p.m.) and their performance was retested on the same task 12. h later (approximately 9:00. a.m.). Polysomnographic (PSG) recordings were performed during the night following training on either task, and an automatic algorithm was used to detect fast and slow spindles and to quantify their characteristics (i.e., density, amplitude, and duration). Statistical analyses revealed higher fast (but not slow) spindle density after training on the MSL than after practice of the CTRL task. The increase in fast spindle density on the MSL task correlated positively with overnight performance gains on the MSL task and with difference in performance gain between the MSL and CTRL tasks. Together, these results suggest that fast sleep spindles help activate the cerebral network involved in overnight MSL consolidation, while slow spindles do not appear to play a role in this mnemonic process.
Original language | English |
---|---|
Pages (from-to) | 117-121 |
Number of pages | 5 |
Journal | Behavioural Brain Research |
Volume | 217 |
Issue number | 1 |
DOIs | |
State | Published - 2 Feb 2011 |
Bibliographical note
Funding Information:Support for this research was provided by a grant from the Canadian Institutes of Health Research (CIHR) to JD, JC, AHT, AK, HB, and LGU, and by an FRSQ scholarship awarded to JC. The authors are grateful to Sonia Frenette and Jean Paquet for their technical assistance.
Keywords
- Fast sleep spindles
- Memory consolidation
- Motor sequence learning
- Sleep
- Slow sleep spindles
ASJC Scopus subject areas
- Behavioral Neuroscience