Exploring Visual Information Flows in Infographics

Min Lu, Chufeng Wang, Joel Lanir, Nanxuan Zhao, Hanspeter Pfister, Daniel Cohen-Or, Hui Huang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Infographics are engaging visual representations that tell an informative story using a fusion of data and graphical elements. The large variety of infographic design poses a challenge for their high-level analysis. We use the concept of Visual Information Flow (VIF), which is the underlying semantic structure that links graphical elements to convey the information and story to the user. To explore VIF, we collected a repository of over 13K infographics. We use a deep neural network to identify visual elements related to information, agnostic to their various artistic appearances. We construct the VIF by automatically chaining these visual elements together based on Gestalt principles. Using this analysis, we characterize the VIF design space by a taxonomy of 12 different design patterns. Exploring in a real-world infographic dataset, we discuss the design space and potentials of VIF in light of this taxonomy.

Original languageEnglish
Title of host publicationCHI 2020 - Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems
PublisherAssociation for Computing Machinery
ISBN (Electronic)9781450367080
DOIs
StatePublished - 21 Apr 2020
Event2020 ACM CHI Conference on Human Factors in Computing Systems, CHI 2020 - Honolulu, United States
Duration: 25 Apr 202030 Apr 2020

Publication series

NameConference on Human Factors in Computing Systems - Proceedings

Conference

Conference2020 ACM CHI Conference on Human Factors in Computing Systems, CHI 2020
Country/TerritoryUnited States
CityHonolulu
Period25/04/2030/04/20

Bibliographical note

Funding Information:
We thank the reviewers for their valuable comments and Freepik, Shutterstock for high-quality infographic designs. This work is supported in parts by NSFC (61761146002, 61602310, 61802265), Guangdong Provincial Natural Science Foundation (2018A030310426), Shenzhen Innovation Program (JCYJ20170302154106666), LHTD (20170003), the National Engineering Laboratory for Big Data System Computing Technology, and the Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ).

Publisher Copyright:
© 2020 ACM.

Keywords

  • design analysis
  • infographics
  • visual information flow

ASJC Scopus subject areas

  • Computer Graphics and Computer-Aided Design
  • Human-Computer Interaction
  • Software

Fingerprint

Dive into the research topics of 'Exploring Visual Information Flows in Infographics'. Together they form a unique fingerprint.

Cite this