Abstract
Polyembryony involves the production of several genetically identical progeny from a single egg through clonal division. Although polyembryonic development allows highly efficient reproduction, especially in some parasitoid wasps, it is far less common than monoembryony (development of one embryo per egg). To understand what might constrain the evolutionary success of polyembryony in parasitoids, we developed Monte Carlo models that simulate the competition between polyembryonic females and their monoembryonic counterparts. We investigated which simulated life-history traits of the females allow the monoembryonic mode of development to succeed. Published empirical studies were surveyed to explore whether these traits indeed differ between polyembryonic parasitoids and related monoembryonic species. The simulations predict an advantage to monoembryony in parasitoids whose reproduction is limited by host availability rather than by egg supply, and that parasitize small-bodied hosts. Comparative data on the parasitoid families Encyrtidae and (to a lesser extent) Braconidae, but not the data from Platygastridae, circumstantially support these predictions. The model also predicts monoembryony to outcompete polyembryony when: 1) hosts vary considerably in quality, 2) polyembryonic development carries high physiological costs, and 3) monoembryonic females make optimal clutch size decisions upon attacking hosts. These multiple constraints may account for the rarity of polyembryony among parasitoid species.
Original language | English |
---|---|
Pages (from-to) | 347-359 |
Number of pages | 13 |
Journal | Oikos |
Volume | 128 |
Issue number | 3 |
DOIs | |
State | Published - Mar 2019 |
Bibliographical note
Publisher Copyright:© 2018 The Authors
Keywords
- Monte Carlo simulation
- evolutionary constraints
- literature survey
- parasitoids
- polyembryony
ASJC Scopus subject areas
- Ecology, Evolution, Behavior and Systematics