Enhanced activation of a "nutrient-sensing" pathway with age contributes to insulin resistance

Francine H. Einstein, Sigal Fishman, Jeffery Bauman, Reid F. Thompson, Derek M. Huffman, Gil Atzmon, Nir Barzilai, Radhika H. Muzumdar

Research output: Contribution to journalArticlepeer-review


Calorie restriction improves life span whereas nutrient excess leads to obesity and unfavorable metabolic consequences, supporting the role for a cellular "nutrient sensor" in aging. Hexosamine biosynthetic pathway (HBP) is a candidate nutrient-sensing pathway. We hypothesized that altered nutrient sensing (by HBP) with age may provide a link among aging, nutrient flux, and insulin resistance. Using a hyperinsulinemic clamp in young rats, we show that experimental activation of HBP, through the systemic infusion of glucosamine, induced severe insulin resistance (36% decline in peripheral insulin action; P<0.05), increased adipose tissue gene expression of fat-derived peptides (PAI-1 by 4-fold, angiotensinogen 3-fold, leptin 2-fold, resistin 4-fold, and adiponectin 4-fold; P<0.01 compared with young saline-infused), and enhanced glycosylation of transcription factors, thus mimicking a physiological and biological phenotype of aging. We further demonstrate a greater activation of nutrient-sensing HBP with age in both old ad libitum-fed and calorie-restricted rats. Interestingly, old calorie-restricted animals rapidly develop insulin resistance when exposed to glucosamine, despite their "young" phenotype. These results suggest that altered nutrient sensing by HBP with age may be the link among nutrients, insulin resistance, and age-related diabetes.

Original languageEnglish
Pages (from-to)3450-3457
Number of pages8
JournalFASEB Journal
Issue number10
StatePublished - Oct 2008
Externally publishedYes

ASJC Scopus subject areas

  • Genetics
  • Molecular Biology
  • Biochemistry
  • Biotechnology


Dive into the research topics of 'Enhanced activation of a "nutrient-sensing" pathway with age contributes to insulin resistance'. Together they form a unique fingerprint.

Cite this