Abstract
The niche-based argument that species are filtered from environments in which they cannot sustain viable populations is the basis of the Richness-Heterogeneity Relationship (RHR). However, the multi-dimensionality of niches suggests that the RHR may take different shapes along different environmental axes, with potential confounding effects if filtering along the axes is not equally strong. Here, we explore how different structural and landscape variables drive the RHR as the accumulative outcome of environmental preferences at the species-level while considering the intercorrelation between heterogeneity levels along three niche axes. We used occurrence data of avifauna from 226 sites situated along a grassland-to-woodland gradient in a Midwestern USA study area. In each site, we quantified horizontal (habitat cover type), vertical (vegetation height structure), and spatial (habitat configuration) heterogeneity and explored the shape of the observed RHR at the landscape scale, as well as the correlations among heterogeneity levels at different axes. We then fitted species distribution models to environmental variables from the three axes separately and compared the stacked probabilities of occurrences of all species to the observed species richness. We found that predictions of richness patterns improved when more than one heterogeneity axis was included in RHR models, and that habitat suitability along different axes is not equally strong. Furthermore, a unimodal RHR along the vegetation height axis, which the species distribution models revealed to be a weak predictor for most species, may arise through intercorrelation with heterogeneity along the two other axes, along which we recorded stronger signals of environmental preference at the species level. Our results emphasize the importance of selecting relevant niche axes in studies of species richness patterns because ultimately, these patterns reflect the various environmental preferences of individual species.
Original language | English |
---|---|
Pages (from-to) | 379-391 |
Number of pages | 13 |
Journal | Basic and Applied Ecology |
Volume | 56 |
DOIs | |
State | Published - Nov 2021 |
Bibliographical note
Publisher Copyright:© 2021 Gesellschaft für Ökologie
Keywords
- Environmental filtering
- Habitat structure
- Habitat suitability
- Heterogeneity
- Species distribution models
- Species richness
ASJC Scopus subject areas
- Ecology, Evolution, Behavior and Systematics