Effective parallelisation for machine learning

Michael Kamp, Mario Boley, Olana Missura, Thomas Gärtner

Research output: Contribution to journalConference articlepeer-review

Abstract

We present a novel parallelisation scheme that simplifies the adaptation of learning algorithms to growing amounts of data as well as growing needs for accurate and confident predictions in critical applications. In contrast to other parallelisation techniques, it can be applied to a broad class of learning algorithms without further mathematical derivations and without writing dedicated code, while at the same time maintaining theoretical performance guarantees. Moreover, our parallelisation scheme is able to reduce the runtime of many learning algorithms to polylogarithmic time on quasi-polynomially many processing units. This is a significant step towards a general answer to an open question on the efficient parallelisation of machine learning algorithms in the sense of Nick's Class (NC). The cost of this parallelisation is in the form of a larger sample complexity. Our empirical study confirms the potential of our parallelisation scheme with fixed numbers of processors and instances in realistic application scenarios.

Original languageEnglish
Pages (from-to)6478-6489
Number of pages12
JournalAdvances in Neural Information Processing Systems
Volume2017-December
StatePublished - 2017
Externally publishedYes
Event31st Annual Conference on Neural Information Processing Systems, NIPS 2017 - Long Beach, United States
Duration: 4 Dec 20179 Dec 2017

Bibliographical note

Publisher Copyright:
© 2017 Neural information processing systems foundation. All rights reserved.

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Effective parallelisation for machine learning'. Together they form a unique fingerprint.

Cite this