Abstract
The interaction of atoms, molecules, crystals, and nanotubes with time-periodic laser fields can lead to high-order dynamical symmetries (DS’s). Here we employ group theoretical methods to study the DS-related properties (quantum numbers, nonaccidental degeneracies) of quantum systems possessing high-order DS’s. As explicit examples we take finite-order rotation symmetry in point and plane groups, and a circularly polarized laser field. We find that nonaccidental degeneracies induced by spatial and time-reversal symmetries may not be lifted inside the laser field. A general result of this work is that the time-evolution operator needs to be computed only up to [Formula Presented] [or, even, [Formula Presented] of the optical cycle, where N is the order of the DS. This allows a substantial reduction of the computational effort required for studying the time-dependent dynamics of such systems.
Original language | English |
---|---|
Pages (from-to) | 5 |
Number of pages | 1 |
Journal | Physical Review A - Atomic, Molecular, and Optical Physics |
Volume | 66 |
Issue number | 1 |
DOIs | |
State | Published - 2002 |
Externally published | Yes |
ASJC Scopus subject areas
- Atomic and Molecular Physics, and Optics