Distributed verification and hardness of distributed approximation

Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal Pandurangan, David Peleg, Roger Wattenhofer

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We study the verification problem in distributed networks, stated as follows. Let H be a subgraph of a network G where each vertex of G knows which edges incident on it are in H. We would like to verify whether H has some properties, e.g., if it is a tree or if it is connected (every node knows in the end of the process whether H has the specified property or not). We would like to perform this verification in a decentralized fashion via a distributed algorithm. The time complexity of verification is measured as the number of rounds of distributed communication. In this paper we initiate a systematic study of distributed verification, and give almost tight lower bounds on the running time of distributed verification algorithms for many fundamental problems such as connectivity, spanning connected subgraph, and s-t cut verification. We then show applications of these results in deriving strong unconditional time lower bounds on the hardness of distributed approximation for many classical optimization problems including minimum spanning tree, shortest paths, and minimum cut. Many of these results are the first non-trivial lower bounds for both exact and approximate distributed computation and they resolve previous open questions. Moreover, our unconditional lower bound of approximating minimum spanning tree (MST) subsumes and improves upon the previous hardness of approximation bound of Elkin [STOC 2004] as well as the lower bound for (exact) MST computation of Peleg and Rubinovich [FOCS 1999]. Our result implies that there can be no distributed approximation algorithm for MST that is significantly faster than the current exact algorithm, for any approximation factor. Our lower bound proofs show an interesting connection between communication complexity and distributed computing which turns out to be useful in establishing the time complexity of exact and approximate distributed computation of many problems.

Original languageEnglish
Title of host publicationSTOC'11 - Proceedings of the 43rd ACM Symposium on Theory of Computing
PublisherAssociation for Computing Machinery
Pages363-372
Number of pages10
ISBN (Print)9781450306911
DOIs
StatePublished - 2011
Externally publishedYes
Event43rd ACM Symposium on Theory of Computing, STOC 2011 - San Jose, United States
Duration: 6 Jun 20118 Jun 2011

Publication series

NameProceedings of the Annual ACM Symposium on Theory of Computing
ISSN (Print)0737-8017

Conference

Conference43rd ACM Symposium on Theory of Computing, STOC 2011
Country/TerritoryUnited States
CitySan Jose
Period6/06/118/06/11

Keywords

  • communication complexity
  • distributed algorithms
  • graph algorithms
  • lower bound
  • minimum spanning tree
  • shortest path
  • time complexity

ASJC Scopus subject areas

  • Software

Fingerprint

Dive into the research topics of 'Distributed verification and hardness of distributed approximation'. Together they form a unique fingerprint.

Cite this